Kasım Diril Laboratory

Cell Cycle and Tumorigenesis

Diril Lab 2016

Diril Lab 2016 (MM, ME, KD, KE)

 Diril Lab 2017

Diril Lab 2017 (KD, ME, MBD, SK, MM)

(232)412 65 59
Group Members
Kerem Esmen, DVM, Specialist
Mustafa Barbaros Düzgün, PhD Student
Mehmet Ergüven, MSc Student
Muhammet Memon, MSc Student
Sefa Karaman, Undergrad Student



We are interested in elucidating the molecular mechanisms that regulate the mitotic transition. Of particular interest to us is the interplay between the kinases and phosphatases that ensure the introduction/ removal of phosphates to/from the mitotic proteins takes place in correct order and in a timely manner. Another branch of our research focuses on the generation of mouse models that mimic human liver cancer development in vivo.

In addition to basic research, our lab contributes to technology transfer at iBG by the development of biosimilars for biotherapeutic mAbs.

Cell cycle and tumorigenesis

From a simplified perspective, cancer can be described as a disorder of the cell cycle. Not surprisingly, cell cycle genes are frequently found to be deregulated during tumorigenesis. Cyclin-dependent kinases (CDKs) are positive regulators of cell cycle progression while cyclin-dependent kinase inhibitors (CKIs) work as brakes to stop cell division. Tumorigenesis results from abnormal expression or activation of positive regulators and/or practical suppression of negative regulators. Due to their critical roles in cell cycle, CDKs and CKIs have potential as druggable targets to stop or slow down tumorigenesis.

We utilize mouse models to study roles of CDKs and CKIs in tumorigenesis. Liver tumors can be very efficiently developed in rodents by using the hydrodynamic tail-vein injection protocol that introduces an oncogenic plasmid DNA cocktail including the Sleeping Beauty transposase, into the hepatocytes. Previously, we have shown that Cdk1 deficient livers are fully resistant to tumorigenesis. We aim to investigate the CDKs and CKIs as potential therapeutic targets in various tumors utilizing transgenic mouse models.

Regulation of mitotic transition by kinases and phosphatases

Progress through different phases of the cell cycle is regulated by concerted actions of CDKs in complexes with their partner cyclin molecules. There is a wide scale of compensation between CDKs, such that, none of the CDKs is individually essential for cell division. The only exception is Cdk1, which makes complexes with Cyclin B1 to initiate and orchestrate mitotic events. Genetic deletion of Cdk1 in mice results in very early embryonic lethality due to the inability of the Cdk1 deficient cells to enter mitosis.

KD Research
Genetic deletion of the Cdk1 gene in mice is lethal due to a halt of cellular proliferation. Histological sections of the small intestine show highly proliferative intestinal crypt cells in control animals (left) and Cdk1 KO animals (right). Cdk1 deficient crypt cells with enlarged nuclei cannot proliferate and repopulate the microvilli, resulting in degeneration of the intestinal lining.

Mitosis involves a number of irreversible major cellular events such as nuclear envelope breakdown and chromosome condensation. Therefore, mitotic entry has to be regulated very tightly by a variety of regulatory mechanisms, whose aim is to ensure a total inhibition of Cdk1 kinase activity prior to mitosis. During mitotic entry, Cdk1 activity rises very sharply in a switch like mechanism. Cdk1 utilizes several effector kinases  to phosphorylate mitotic substrates. On the other hand, dephosphorylation by phosphatases have to be prevented for an efficient accumulation of phosphorylations on these substrates. We study Cdk1 and its effector mitotic kinases utilizing transgenic animal models and cell lines derived from them.

Kasım Diril Şekil
There are several mechanisms that regulate Cdk1 kinase activity. First and foremost, both Cdk1 and Cyclin B1 are E2F target genes that get expressed upon reception of mitogenic stimuli. Inhibitory phosphorylations (introduced by the inhibitory kinases Wee1 and Myt1) have to be removed by Cdc25 phosphatase and an activating phosphorylation has to be introduced by Cdk-activating kinase for full Cdk1 activity (left panel). These regulatory mechanisms ensure that Cdk1 activity rises and falls steeply, in a switch-like manner during mitosis (right panel).


Greatwall/Mastl kinase is one of the several effector kinases of Cdk1 in mitosis. It is activated by Cdk1 during mitosis and in turn, it phosphorylates two small inhibitory proteins Arpp19 and Ensa that sterically inhibit PP2A phosphatase activity. This regulatory pathway ensures accumulation of mitotic phosphorylations rapidly.We have generated a conditional knockout mouse model of the Mastl kinase. Mastl KO embryos die very early during development. Conditional deletion of Mastl prior to meiosis resulted in an arrest before metaphase II. In somatic cells, deletion of Mastl resulted in chromosome segregation defects during anaphase. We are investigating the molecular mechanisms underlying these phenotypes using transgenic mouse models and cell lines derived from them.


Education/Research Experience
2014 – present Assistant Professor – Group Leader
Izmir International Biomedicine and Genome Institute/Center, DEU, Izmir.
2007 – 2014 Research Fellow
Institute of Molecular and Cell Biology, Singapur.
2006 – 2007 Visiting Fellow
National Cancer Institute, Frederick, MD, ABD.
2005 – 2006 Research Fellow
Free University, Berlin, Germany.
2001 – 2005 PhD. in Molecular Biology
Georg-August University, Göttingen, Germany.
2000 – 2001 International Max Planck Research School for Molecular Biology, Göttingen, Germany.
1996 – 2000 B.Sc. in Molecular Biology and Genetics
Boğaziçi University, Istanbul, Turkey.
• Outstanding Young Scientist Award, Turkish Academy of Sciences (TUBA-GEBIP) – 2017
• Science Academy Young Scientist Awards Program (BAGEP) 2016 Award
• Scientific and Technological Research Council of Turkey (TUBITAK) Reintegration Fellowship, 2015-2017
Full list and citations : Google Scholar : Kasim Diril
• Gopinathan L, Szmyd R, Low D, Diril MK, Chang HY, Coppola V, Liu K, Tessarollo L, Guccione E, van Pelt AMM, Kaldis P. Emi2 Is Essential for Mouse Spermatogenesis. Cell Rep. 2017 Jul 18;20(3):697-708.
• Adhikari D, Busayavalasa K, Zhang J, Hu M, Risal S, Bayazit MB, Singh M, Diril MK, Kaldis P, Liu K. Inhibitory phosphorylation of Cdk1 mediates prolonged prophase I arrest in female germ cells and is essential for female reproductive lifespan. Cell Res. 2016 Oct 21.
• Diril MK, Bisteau X, Kitagawa M, Caldez MJ, Wee S, Gunaratne J, Lee SH, Kaldis P. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint. PloS Genet. 2016 Sep 15;12(9):e1006310.
• Chauhan S, Diril MK, Lee JH, Bisteau X, Manoharan V, Adhikari D, Ratnacaram CK, Janela B, Noffke J, Ginhoux F, Coppola V, Liu K, Tessarollo L, Kaldis P. Cdk2 catalytic activity is essential for meiotic cell division in vivo. Biochem J. 2016 Sep 15;473(18):2783-98.
• Hani Alotaibi, Nese Atabey, Kasım Diril, Esra Erdal, Mehmet Ozturk. Molecular Mechanisms of Hepatocellular Carcinoma, Chapter Hepatocellular Carcinoma Part of the series Current Clinical Oncology Springer. 2016, Aug 27; 43-63.
• Adhikari D, Diril MK, Busayavalasa K, Risal S, Nakagawa S, Lindkvist R, Shen Y, Coppola V, Tessarollo L, Kudo NR, Kaldis P, Liu K. Mastl is required for timely activation of APC/C in meiosis I and Cdk1 reactivation in meiosis II. J Cell Biol. 2014 Sep 22;206(7):843-853.
• Miettinen TP, Pessa HK, Caldez MJ, Fuhrer T, Diril MK, Sauer U, Kaldis P, Björklund M. Identification of transcriptional and metabolic programs related to mammalian cell size. Curr Biol. 2014 Mar 17;24(6):598-608.
• Diril MK, Ratnacaram CK, Padmakumar VC, Du T, Wasser M, Coppola V, Tessarollo L, Kaldis P. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3826-31.